A KAM theorem for one dimensional Schrödinger equation with periodic boundary conditions

نویسندگان

  • Jiansheng Geng
  • Jiangong You
چکیده

In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx +mu+ g(u, ū) ū = 0, with Periodic Boundary Conditions is considered; m / ∈ 1 12Z is a real parameter and the nonlinearity g(u, ū)= ∑ j,l,j+l 4 ajlu j ū , aj l = alj ∈ R, a22 = 0 is a real analytic function in a neighborhood of the origin. The KAM machinery is adapted to fit the above equation so as to construct small-amplitude periodic or quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dimensional dynamical system. © 2004 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Periodic Solutions for 1D Schrödinger Equation with the Nonlinearity |u|2pu∗

In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx + |u|2pu= 0, p ∈N, with periodic boundary conditions is considered. It is proved that the above equation admits small-amplitude quasi-periodic solutions corresponding to 2-dimensional invariant tori of an associated infinite-dimensional dynamical system. The proof is based on infinite-dimensional KAM theory, partial no...

متن کامل

Quasi-periodic Solutions of 1d Nonlinear Schrödinger Equation with a Multiplicative Potential

This paper deals with one-dimensional (1D) nonlinear Schrödinger equation with a multiplicative potential, subject to Dirichlet boundary conditions. It is proved that for each prescribed integer b > 1, the equation admits smallamplitude quasi-periodic solutions, whose b-dimensional frequencies are small dilation of a given Diophantine vector. The proof is based on a modified infinitedimensional...

متن کامل

Quasi-periodic solutions in a nonlinear Schrödinger equation

In this paper, one-dimensional (1D) nonlinear Schrödinger equation iut − uxx +mu+ |u|4u= 0 with the periodic boundary condition is considered. It is proved that for each given constant potential m and each prescribed integer N > 1, the equation admits a Whitney smooth family of small amplitude, time quasi-periodic solutions with N Diophantine frequencies. The proof is based on a partial Birkhof...

متن کامل

A KAM Theorem for Hamiltonian Partial Differential Equations with Unbounded Perturbations

We establish an abstract infinite dimensional KAM theorem dealing with unbounded perturbation vector-field, which could be applied to a large class of Hamiltonian PDEs containing the derivative ∂x in the perturbation. Especially, in this range of application lie a class of derivative nonlinear Schrödinger equations with Dirichlet boundary conditions and perturbed Benjamin-Ono equation with peri...

متن کامل

KAM Tori for 1D Nonlinear Wave Equations with Periodic Boundary Conditions

with periodic boundary conditions are considered; V is a periodic smooth or analytic function and the nonlinearity f is an analytic function vanishing together with its derivative at u = 0. It is proved that for “most” potentials V (x), the above equation admits small-amplitude periodic or quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004